Towards a high-density photonic tensor core enabled by intensity-modulated microrings and photonic wire bonding
Tait, A. N. (2021) Quantifying energy use in silicon photonic neural networks. arXiv preprint arXiv:2108.04819
Thompson, N. C., Greenewald, Okay., Lee, Okay. & Manso, G. F. (2020) The computational limits of deep studying. arXiv preprint arXiv:2007.05558.
Shastri, B. J. et al. Photonics for synthetic intelligence and neuromorphic computing. Nat. Photonics 15, 102–114 (2021).
Google Scholar
Estakhri, N. M., Edwards, B. & Engheta, N. Inverse-designed metastructures that resolve equations. Science 363, 1333–1338 (2019).
Google Scholar
Xu, X.-Y. et al. A scalable photonic pc fixing the subset sum drawback. Sci. Adv. 6, eaay5853 (2020).
Google Scholar
Zhang, W. & Yao, J. Photonic built-in field-programmable disk array sign processor. Nat. Communi. 11, 1–9 (2020).
Google Scholar
Salmani, M., Eshaghi, A., Luan, E. & Saha, S. (2021) Photonic computing to speed up knowledge processing in wi-fi communications. arXiv preprint arXiv:2103.07406.
Shen, Y. et al. Deep studying with coherent nanophotonic circuits. Nat. Photonics 11, 441–446 (2017).
Google Scholar
Zhang, H. et al. An optical neural chip for implementing complex-valued neural community. Nat. Commun. 12, 1–11 (2021).
Google Scholar
Harris, N. C. et al. Quantum transport simulations in a programmable nanophotonic processor. Nat. Photonics 11, 447–452 (2017).
Google Scholar
Pérez-López, D., Sánchez, E. & Capmany, J. Programmable true time delay traces utilizing built-in waveguide meshes. J. Lightwave Technol. 36, 4591–4601 (2018).
Google Scholar
Shokraneh, F., Nezami, M. S. & Liboiron-Ladouceur, O. Theoretical and experimental evaluation of a 4 (instances ) 4 reconfigurable MZI-based linear optical processor. J. Lightwave Technol. 38, 1258–1267 (2020).
Google Scholar
Tait, A. N. (2018) Silicon Photonic Neural Networks. Ph.D. thesis, Princeton College, Princeton.
Tait, A. N., Nahmias, M. A., Shastri, B. J. & Prucnal, P. R. Broadcast and weight: An built-in community for scalable photonic spike processing. J. Lightwave Technol. 32, 4029–4041 (2014).
Google Scholar
Tait, A. N. et al. Neuromorphic photonic networks utilizing silicon photonic weight banks. Sci. Rep. 7, 1–10 (2017).
Google Scholar
Huang, C. et al. Demonstration of scalable microring weight financial institution management for large-scale photonic built-in circuits. APL Photonics 5, 040803 (2020).
Google Scholar
Blow, E. C. et al. Broadband radio-frequency sign processing with neuromorphic photonics. In AI and Optical Knowledge Sciences III Vol. 12019 157–162 (SPIE, Bellingham, 2022).
Peng, H.-T. et al. (2021) A photonic-circuits-inspired compact community: Towards real-time wi-fi sign classification on the edge. arXiv preprint arXiv:2106.13865.
Huang, C. et al. A silicon photonic-electronic neural community for fibre nonlinearity compensation. Nat. Electron. 4, 837–844 (2021).
Google Scholar
Prucnal, P. R., Shastri, B. J. & Teich, M. C. Neuromorphic photonics (CRC Press, Boca Raton, 2017).
Google Scholar
Feldmann, J. et al. Parallel convolutional processing utilizing an built-in photonic tensor core. Nature 589, 52–58 (2021).
Google Scholar
Popović, M. (2008) Concept and design of Excessive-index-contrast Microphotonic Circuits. Ph.D. thesis, Massachusetts Institute of Know-how, Cambridge.
Sacher, W. et al. Coupling modulation of microrings at charges past the linewidth restrict. Optics Specific 21, 9722–9733 (2013).
Google Scholar
Hai, M. S., Fard, M. M. P. & Liboiron-Ladouceur, O. A hoop-based 25 Gb/s DAC-less PAM-4 modulator. IEEE J. Sel. Prime. Quantum Electron. 22, 123–130 (2016).
Google Scholar
Shan, W. et al. Broadband constantly tunable microwave photonic delay line based mostly on cascaded silicon microrings. Decide. Specific 29, 3375–3385 (2021).
Google Scholar
Preble, S. F. et al. On-chip quantum interference from a single silicon ring-resonator supply. Phys. Rev. Appl. 4, 021001 (2015).
Google Scholar
Shoman, H. et al. Compact wavelength-and bandwidth-tunable microring modulator. Decide. categorical 27, 26661–26675 (2019).
Google Scholar
Morichetti, F. et al. Polarization-transparent silicon photonic add-drop multiplexer with wideband hitless tuneability. Nat. Commun. 12, 1–7 (2021).
Google Scholar
Jayatilleka, H. et al. Wavelength tuning and stabilization of microring-based filters utilizing silicon in-resonator photoconductive heaters. Decide. Specific 23, 25084–25097 (2015).
Google Scholar
Poulton, C. V., Dong, P. & Chen, Y.-Okay. (2015) Photoresistive microring heater with resonance management loop. In CLEO: Science and Improvements SM2I–3. Optical Society of America, Washington.
Zhang, Y., Li, Y., Feng, S. & Poon, A. W. In direction of adaptively tuned silicon microring resonators for optical networks-on-chip functions. IEEE J. Sel. Subjects Quantum Electron. 20, 136–149 (2014).
Google Scholar
Chrostowski, L. et al. (2021) A silicon photonic evanescent-field sensor structure utilizing a fixed-wavelength laser. In Optical Interconnects XXI, vol 11692. pp. 116920, Worldwide Society for Optics and Photonics, Bellingham.
Luan, E., Saha, S., Semnani, B., Salmani, M. & Eshaghi, A. (2021) Interferometric coupling-based modulator for large-scale built-in photonic methods. In 2021 Conf. on Lasers and Electro-Optics Europe & European Quantum Electronics Convention (CLEO/Europe-EQEC), IEEE, NY.
Marquez, B. A. et al. Photonic sample reconstruction enabled by on-chip on-line studying and inference. J. Phys. Photonics 3, 024006 (2021).
Google Scholar
Guo, Z. (2021) Photonic Tensor Machine and Multi-level Encoding and Decoding in Wavelength-Multiplexed Photonic Processors. Ph.D. thesis, Queen’s College, Canada.
Zhang, W. et al. Microring weight banks management past 8.5-bits accuracy. arXiv preprint arXiv:2104.01164 (2021).
Geuzebroek, D. H. & Driessen, A. Ring-resonator-based wavelength filters. In Wavelength filters in fibre optics 341–379 (Springer, Singapore, 2006).
Google Scholar
Preston, Okay., Sherwood-Droz, N., Levy, J. S. & Lipson, M. Efficiency tips for WDM interconnects based mostly on silicon microring resonators. In CLEO: 2011-Laser Science to Photonic Functions 1–2 (IEEE, Manhattan, 2011).
Dong, P. et al. 1×4 reconfigurable demultiplexing filter based mostly on free-standing silicon racetrack resonators. Optics Specific 18, 24504–24509 (2010).
Google Scholar
Jayatilleka, H. et al. Crosstalk in SOI microring resonator-based filters. J. Lightwave Technol. 34, 2886–2896 (2016).
Google Scholar
Bangari, V. et al. Digital electronics and analog photonics for convolutional neural networks (DEAP-CNNs). IEEE J. Sel. Prime. Quantum Electron. 26, 1–13 (2019).
Google Scholar
Xu, Q., Fattal, D. & Beausoleil, R. G. Silicon microring resonators with 1.5-(upmu )m radius. Decide. Specific 16, 4309–4315 (2008).
Google Scholar
Ansys-Lumerical. (2022) Lumerical. https://www.lumerical.com/ (Accessed: 18 January).
Tait, A. N. et al. Microring weight banks. IEEE J. Sel. Prime. Quantum Electron. 22, 312–325 (2016).
Google Scholar
Lindenmann, N. et al. Photonic wire bonding: A novel idea for chip-scale interconnects. Optics Specific 20, 17667–17677 (2012).
Google Scholar
Lindenmann, N. et al. Connecting silicon photonic circuits to multicore fibers by photonic wire bonding. J. Lightwave Technol. 33, 755–760 (2014).
Google Scholar
Billah, M. R. et al. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding. Optica 5, 876–883 (2018).
Google Scholar
Xu, Y. et al. InP/silicon hybrid external-cavity lasers (ECL) utilizing photonic wirebonds as coupling components. In Optical Fiber Communication Convention M4H-6 (Optical Society of America, Washington, 2020).
Blaicher, M. et al. Hybrid multi-chip meeting of optical communication engines by in situ 3D nano-lithography. Gentle Sci. Appl. 9, 1–11 (2020).
Google Scholar
Chrostowski, L. & Hochberg, M. Silicon photonics design: From gadgets to methods (Cambridge College Press, Cambridge, 2015).
Google Scholar
Al-Qadasi, M., Chrostowski, L., Shastri, B. & Shekhar, S. Scaling up silicon photonic-based accelerators: Challenges and alternatives. APL Photonics 7, 020902 (2022).
Google Scholar
Jayatilleka, H., Shoman, H., Chrostowski, L. & Shekhar, S. Photoconductive heaters allow management of large-scale silicon photonic ring resonator circuits. Optica 6, 84–91 (2019).
Google Scholar
Liu, Z. et al. 56 Gbps high-speed Ge electro-absorption modulator. Photonics Res. 8, 1648–1652 (2020).
Google Scholar
Hui, R. Introduction to Fiber-Optic Communications (Tutorial Press, Cambridge, 2019).
Nahmias, M. A. et al. Photonic multiply-accumulate operations for neural networks. IEEE J. Sel. Subjects Quantum Electron. 26, 1–18 (2019).
Google Scholar
Zheng, J. et al. GST-on-silicon hybrid nanophotonic built-in circuits: A non-volatile quasi-continuously reprogrammable platform. Decide. Mater. Specific 8, 1551–1561 (2018).
Google Scholar
Zhang, Y. et al. Broadband clear optical section change supplies for high-performance nonvolatile photonics. Nat. Commun. 10, 1–9 (2019).
Google Scholar
Fang, Z. et al. Non-volatile reconfigurable built-in photonics enabled by broadband low-loss section change materials. Adv. Decide. Mater. 9, 2002049 (2021).
Google Scholar
rewrite this title In direction of a high-density photonic tensor core enabled by intensity-modulated microrings and photonic wire bonding
Summarize this content material to 100 phrases Tait, A. N. (2021) Quantifying energy use in silicon photonic neural networks. arXiv preprint arXiv:2108.04819Thompson, N. C., Greenewald, Okay., Lee, Okay. & Manso, G. F. (2020) The computational limits of deep studying. arXiv preprint arXiv:2007.05558.Shastri, B. J. et al. Photonics for synthetic intelligence and neuromorphic computing. Nat. Photonics 15, 102–114 (2021).Article
ADS
CAS
Google Scholar
Estakhri, N. M., Edwards, B. & Engheta, N. Inverse-designed metastructures that resolve equations. Science 363, 1333–1338 (2019).Article
ADS
MATH
Google Scholar
Xu, X.-Y. et al. A scalable photonic pc fixing the subset sum drawback. Sci. Adv. 6, eaay5853 (2020).Article
ADS
Google Scholar
Zhang, W. & Yao, J. Photonic built-in field-programmable disk array sign processor. Nat. Communi. 11, 1–9 (2020).ADS
Google Scholar
Salmani, M., Eshaghi, A., Luan, E. & Saha, S. (2021) Photonic computing to speed up knowledge processing in wi-fi communications. arXiv preprint arXiv:2103.07406.Shen, Y. et al. Deep studying with coherent nanophotonic circuits. Nat. Photonics 11, 441–446 (2017).Article
ADS
CAS
Google Scholar
Zhang, H. et al. An optical neural chip for implementing complex-valued neural community. Nat. Commun. 12, 1–11 (2021).ADS
Google Scholar
Harris, N. C. et al. Quantum transport simulations in a programmable nanophotonic processor. Nat. Photonics 11, 447–452 (2017).Article
ADS
CAS
Google Scholar
Pérez-López, D., Sánchez, E. & Capmany, J. Programmable true time delay traces utilizing built-in waveguide meshes. J. Lightwave Technol. 36, 4591–4601 (2018).Article
ADS
Google Scholar
Shokraneh, F., Nezami, M. S. & Liboiron-Ladouceur, O. Theoretical and experimental evaluation of a 4 (instances ) 4 reconfigurable MZI-based linear optical processor. J. Lightwave Technol. 38, 1258–1267 (2020).Article
ADS
CAS
Google Scholar
Tait, A. N. (2018) Silicon Photonic Neural Networks. Ph.D. thesis, Princeton College, Princeton.Tait, A. N., Nahmias, M. A., Shastri, B. J. & Prucnal, P. R. Broadcast and weight: An built-in community for scalable photonic spike processing. J. Lightwave Technol. 32, 4029–4041 (2014).Article
Google Scholar
Tait, A. N. et al. Neuromorphic photonic networks utilizing silicon photonic weight banks. Sci. Rep. 7, 1–10 (2017).Article
CAS
Google Scholar
Huang, C. et al. Demonstration of scalable microring weight financial institution management for large-scale photonic built-in circuits. APL Photonics 5, 040803 (2020).Article
ADS
Google Scholar
Blow, E. C. et al. Broadband radio-frequency sign processing with neuromorphic photonics. In AI and Optical Knowledge Sciences III Vol. 12019 157–162 (SPIE, Bellingham, 2022).
Google Scholar
Peng, H.-T. et al. (2021) A photonic-circuits-inspired compact community: Towards real-time wi-fi sign classification on the edge. arXiv preprint arXiv:2106.13865.Huang, C. et al. A silicon photonic-electronic neural community for fibre nonlinearity compensation. Nat. Electron. 4, 837–844 (2021).Article
CAS
Google Scholar
Prucnal, P. R., Shastri, B. J. & Teich, M. C. Neuromorphic photonics (CRC Press, Boca Raton, 2017).Guide
Google Scholar
Feldmann, J. et al. Parallel convolutional processing utilizing an built-in photonic tensor core. Nature 589, 52–58 (2021).Article
ADS
CAS
Google Scholar
Popović, M. (2008) Concept and design of Excessive-index-contrast Microphotonic Circuits. Ph.D. thesis, Massachusetts Institute of Know-how, Cambridge.Sacher, W. et al. Coupling modulation of microrings at charges past the linewidth restrict. Optics Specific 21, 9722–9733 (2013).Article
ADS
CAS
Google Scholar
Hai, M. S., Fard, M. M. P. & Liboiron-Ladouceur, O. A hoop-based 25 Gb/s DAC-less PAM-4 modulator. IEEE J. Sel. Prime. Quantum Electron. 22, 123–130 (2016).Article
ADS
Google Scholar
Shan, W. et al. Broadband constantly tunable microwave photonic delay line based mostly on cascaded silicon microrings. Decide. Specific 29, 3375–3385 (2021).Article
ADS
CAS
Google Scholar
Preble, S. F. et al. On-chip quantum interference from a single silicon ring-resonator supply. Phys. Rev. Appl. 4, 021001 (2015).Article
ADS
Google Scholar
Shoman, H. et al. Compact wavelength-and bandwidth-tunable microring modulator. Decide. categorical 27, 26661–26675 (2019).Article
ADS
CAS
Google Scholar
Morichetti, F. et al. Polarization-transparent silicon photonic add-drop multiplexer with wideband hitless tuneability. Nat. Commun. 12, 1–7 (2021).Article
ADS
Google Scholar
Jayatilleka, H. et al. Wavelength tuning and stabilization of microring-based filters utilizing silicon in-resonator photoconductive heaters. Decide. Specific 23, 25084–25097 (2015).Article
ADS
CAS
Google Scholar
Poulton, C. V., Dong, P. & Chen, Y.-Okay. (2015) Photoresistive microring heater with resonance management loop. In CLEO: Science and Improvements SM2I–3. Optical Society of America, Washington.Zhang, Y., Li, Y., Feng, S. & Poon, A. W. In direction of adaptively tuned silicon microring resonators for optical networks-on-chip functions. IEEE J. Sel. Subjects Quantum Electron. 20, 136–149 (2014).Article
ADS
Google Scholar
Chrostowski, L. et al. (2021) A silicon photonic evanescent-field sensor structure utilizing a fixed-wavelength laser. In Optical Interconnects XXI, vol 11692. pp. 116920, Worldwide Society for Optics and Photonics, Bellingham.Luan, E., Saha, S., Semnani, B., Salmani, M. & Eshaghi, A. (2021) Interferometric coupling-based modulator for large-scale built-in photonic methods. In 2021 Conf. on Lasers and Electro-Optics Europe & European Quantum Electronics Convention (CLEO/Europe-EQEC), IEEE, NY.Marquez, B. A. et al. Photonic sample reconstruction enabled by on-chip on-line studying and inference. J. Phys. Photonics 3, 024006 (2021).Article
ADS
Google Scholar
Guo, Z. (2021) Photonic Tensor Machine and Multi-level Encoding and Decoding in Wavelength-Multiplexed Photonic Processors. Ph.D. thesis, Queen’s College, Canada.Zhang, W. et al. Microring weight banks management past 8.5-bits accuracy. arXiv preprint arXiv:2104.01164 (2021).Geuzebroek, D. H. & Driessen, A. Ring-resonator-based wavelength filters. In Wavelength filters in fibre optics 341–379 (Springer, Singapore, 2006).Chapter
Google Scholar
Preston, Okay., Sherwood-Droz, N., Levy, J. S. & Lipson, M. Efficiency tips for WDM interconnects based mostly on silicon microring resonators. In CLEO: 2011-Laser Science to Photonic Functions 1–2 (IEEE, Manhattan, 2011).
Google Scholar
Dong, P. et al. 1×4 reconfigurable demultiplexing filter based mostly on free-standing silicon racetrack resonators. Optics Specific 18, 24504–24509 (2010).Article
ADS
CAS
Google Scholar
Jayatilleka, H. et al. Crosstalk in SOI microring resonator-based filters. J. Lightwave Technol. 34, 2886–2896 (2016).Article
ADS
CAS
Google Scholar
Bangari, V. et al. Digital electronics and analog photonics for convolutional neural networks (DEAP-CNNs). IEEE J. Sel. Prime. Quantum Electron. 26, 1–13 (2019).Article
Google Scholar
Xu, Q., Fattal, D. & Beausoleil, R. G. Silicon microring resonators with 1.5-(upmu )m radius. Decide. Specific 16, 4309–4315 (2008).Article
ADS
Google Scholar
Ansys-Lumerical. (2022) Lumerical. https://www.lumerical.com/ (Accessed: 18 January).Tait, A. N. et al. Microring weight banks. IEEE J. Sel. Prime. Quantum Electron. 22, 312–325 (2016).Article
ADS
Google Scholar
Lindenmann, N. et al. Photonic wire bonding: A novel idea for chip-scale interconnects. Optics Specific 20, 17667–17677 (2012).Article
ADS
CAS
Google Scholar
Lindenmann, N. et al. Connecting silicon photonic circuits to multicore fibers by photonic wire bonding. J. Lightwave Technol. 33, 755–760 (2014).Article
ADS
Google Scholar
Billah, M. R. et al. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding. Optica 5, 876–883 (2018).Article
ADS
CAS
Google Scholar
Xu, Y. et al. InP/silicon hybrid external-cavity lasers (ECL) utilizing photonic wirebonds as coupling components. In Optical Fiber Communication Convention M4H-6 (Optical Society of America, Washington, 2020).
Google Scholar
Blaicher, M. et al. Hybrid multi-chip meeting of optical communication engines by in situ 3D nano-lithography. Gentle Sci. Appl. 9, 1–11 (2020).Article
Google Scholar
Chrostowski, L. & Hochberg, M. Silicon photonics design: From gadgets to methods (Cambridge College Press, Cambridge, 2015).Guide
Google Scholar
Al-Qadasi, M., Chrostowski, L., Shastri, B. & Shekhar, S. Scaling up silicon photonic-based accelerators: Challenges and alternatives. APL Photonics 7, 020902 (2022).Article
ADS
CAS
Google Scholar
Jayatilleka, H., Shoman, H., Chrostowski, L. & Shekhar, S. Photoconductive heaters allow management of large-scale silicon photonic ring resonator circuits. Optica 6, 84–91 (2019).Article
ADS
CAS
Google Scholar
Liu, Z. et al. 56 Gbps high-speed Ge electro-absorption modulator. Photonics Res. 8, 1648–1652 (2020).Article
CAS
Google Scholar
Hui, R. Introduction to Fiber-Optic Communications (Tutorial Press, Cambridge, 2019).
Google Scholar
Nahmias, M. A. et al. Photonic multiply-accumulate operations for neural networks. IEEE J. Sel. Subjects Quantum Electron. 26, 1–18 (2019).Article
Google Scholar
Zheng, J. et al. GST-on-silicon hybrid nanophotonic built-in circuits: A non-volatile quasi-continuously reprogrammable platform. Decide. Mater. Specific 8, 1551–1561 (2018).Article
ADS
CAS
Google Scholar
Zhang, Y. et al. Broadband clear optical section change supplies for high-performance nonvolatile photonics. Nat. Commun. 10, 1–9 (2019).ADS
Google Scholar
Fang, Z. et al. Non-volatile reconfigurable built-in photonics enabled by broadband low-loss section change materials. Adv. Decide. Mater. 9, 2002049 (2021).Article
CAS
Google Scholar