Towards a high-density photonic tensor core enabled by intensity-modulated microrings and photonic wire bonding

  • Tait, A. N. (2021) Quantifying energy use in silicon photonic neural networks. arXiv preprint arXiv:2108.04819

  • Thompson, N. C., Greenewald, Okay., Lee, Okay. & Manso, G. F. (2020) The computational limits of deep studying. arXiv preprint arXiv:2007.05558.

  • Shastri, B. J. et al. Photonics for synthetic intelligence and neuromorphic computing. Nat. Photonics 15, 102–114 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Estakhri, N. M., Edwards, B. & Engheta, N. Inverse-designed metastructures that resolve equations. Science 363, 1333–1338 (2019).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Xu, X.-Y. et al. A scalable photonic pc fixing the subset sum drawback. Sci. Adv. 6, eaay5853 (2020).

    Article 
    ADS 

    Google Scholar 

  • Zhang, W. & Yao, J. Photonic built-in field-programmable disk array sign processor. Nat. Communi. 11, 1–9 (2020).

    ADS 

    Google Scholar 

  • Salmani, M., Eshaghi, A., Luan, E. & Saha, S. (2021) Photonic computing to speed up knowledge processing in wi-fi communications. arXiv preprint arXiv:2103.07406.

  • Shen, Y. et al. Deep studying with coherent nanophotonic circuits. Nat. Photonics 11, 441–446 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhang, H. et al. An optical neural chip for implementing complex-valued neural community. Nat. Commun. 12, 1–11 (2021).

    ADS 

    Google Scholar 

  • Harris, N. C. et al. Quantum transport simulations in a programmable nanophotonic processor. Nat. Photonics 11, 447–452 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Pérez-López, D., Sánchez, E. & Capmany, J. Programmable true time delay traces utilizing built-in waveguide meshes. J. Lightwave Technol. 36, 4591–4601 (2018).

    Article 
    ADS 

    Google Scholar 

  • Shokraneh, F., Nezami, M. S. & Liboiron-Ladouceur, O. Theoretical and experimental evaluation of a 4 (instances ) 4 reconfigurable MZI-based linear optical processor. J. Lightwave Technol. 38, 1258–1267 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Tait, A. N. (2018) Silicon Photonic Neural Networks. Ph.D. thesis, Princeton College, Princeton.

  • Tait, A. N., Nahmias, M. A., Shastri, B. J. & Prucnal, P. R. Broadcast and weight: An built-in community for scalable photonic spike processing. J. Lightwave Technol. 32, 4029–4041 (2014).

    Article 

    Google Scholar 

  • Tait, A. N. et al. Neuromorphic photonic networks utilizing silicon photonic weight banks. Sci. Rep. 7, 1–10 (2017).

    Article 
    CAS 

    Google Scholar 

  • Huang, C. et al. Demonstration of scalable microring weight financial institution management for large-scale photonic built-in circuits. APL Photonics 5, 040803 (2020).

    Article 
    ADS 

    Google Scholar 

  • Blow, E. C. et al. Broadband radio-frequency sign processing with neuromorphic photonics. In AI and Optical Knowledge Sciences III Vol. 12019 157–162 (SPIE, Bellingham, 2022).

    Google Scholar 

  • Peng, H.-T. et al. (2021) A photonic-circuits-inspired compact community: Towards real-time wi-fi sign classification on the edge. arXiv preprint arXiv:2106.13865.

  • Huang, C. et al. A silicon photonic-electronic neural community for fibre nonlinearity compensation. Nat. Electron. 4, 837–844 (2021).

    Article 
    CAS 

    Google Scholar 

  • Prucnal, P. R., Shastri, B. J. & Teich, M. C. Neuromorphic photonics (CRC Press, Boca Raton, 2017).

    Guide 

    Google Scholar 

  • Feldmann, J. et al. Parallel convolutional processing utilizing an built-in photonic tensor core. Nature 589, 52–58 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Popović, M. (2008) Concept and design of Excessive-index-contrast Microphotonic Circuits. Ph.D. thesis, Massachusetts Institute of Know-how, Cambridge.

  • Sacher, W. et al. Coupling modulation of microrings at charges past the linewidth restrict. Optics Specific 21, 9722–9733 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hai, M. S., Fard, M. M. P. & Liboiron-Ladouceur, O. A hoop-based 25 Gb/s DAC-less PAM-4 modulator. IEEE J. Sel. Prime. Quantum Electron. 22, 123–130 (2016).

    Article 
    ADS 

    Google Scholar 

  • Shan, W. et al. Broadband constantly tunable microwave photonic delay line based mostly on cascaded silicon microrings. Decide. Specific 29, 3375–3385 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Preble, S. F. et al. On-chip quantum interference from a single silicon ring-resonator supply. Phys. Rev. Appl. 4, 021001 (2015).

    Article 
    ADS 

    Google Scholar 

  • Shoman, H. et al. Compact wavelength-and bandwidth-tunable microring modulator. Decide. categorical 27, 26661–26675 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Morichetti, F. et al. Polarization-transparent silicon photonic add-drop multiplexer with wideband hitless tuneability. Nat. Commun. 12, 1–7 (2021).

    Article 
    ADS 

    Google Scholar 

  • Jayatilleka, H. et al. Wavelength tuning and stabilization of microring-based filters utilizing silicon in-resonator photoconductive heaters. Decide. Specific 23, 25084–25097 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Poulton, C. V., Dong, P. & Chen, Y.-Okay. (2015) Photoresistive microring heater with resonance management loop. In CLEO: Science and Improvements SM2I–3. Optical Society of America, Washington.

  • Zhang, Y., Li, Y., Feng, S. & Poon, A. W. In direction of adaptively tuned silicon microring resonators for optical networks-on-chip functions. IEEE J. Sel. Subjects Quantum Electron. 20, 136–149 (2014).

    Article 
    ADS 

    Google Scholar 

  • Chrostowski, L. et al. (2021) A silicon photonic evanescent-field sensor structure utilizing a fixed-wavelength laser. In Optical Interconnects XXI, vol 11692. pp. 116920, Worldwide Society for Optics and Photonics, Bellingham.

  • Luan, E., Saha, S., Semnani, B., Salmani, M. & Eshaghi, A. (2021) Interferometric coupling-based modulator for large-scale built-in photonic methods. In 2021 Conf. on Lasers and Electro-Optics Europe & European Quantum Electronics Convention (CLEO/Europe-EQEC), IEEE, NY.

  • Marquez, B. A. et al. Photonic sample reconstruction enabled by on-chip on-line studying and inference. J. Phys. Photonics 3, 024006 (2021).

    Article 
    ADS 

    Google Scholar 

  • Guo, Z. (2021) Photonic Tensor Machine and Multi-level Encoding and Decoding in Wavelength-Multiplexed Photonic Processors. Ph.D. thesis, Queen’s College, Canada.

  • Zhang, W. et al. Microring weight banks management past 8.5-bits accuracy. arXiv preprint arXiv:2104.01164 (2021).

  • Geuzebroek, D. H. & Driessen, A. Ring-resonator-based wavelength filters. In Wavelength filters in fibre optics 341–379 (Springer, Singapore, 2006).

    Chapter 

    Google Scholar 

  • Preston, Okay., Sherwood-Droz, N., Levy, J. S. & Lipson, M. Efficiency tips for WDM interconnects based mostly on silicon microring resonators. In CLEO: 2011-Laser Science to Photonic Functions 1–2 (IEEE, Manhattan, 2011).

    Google Scholar 

  • Dong, P. et al. 1×4 reconfigurable demultiplexing filter based mostly on free-standing silicon racetrack resonators. Optics Specific 18, 24504–24509 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Jayatilleka, H. et al. Crosstalk in SOI microring resonator-based filters. J. Lightwave Technol. 34, 2886–2896 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bangari, V. et al. Digital electronics and analog photonics for convolutional neural networks (DEAP-CNNs). IEEE J. Sel. Prime. Quantum Electron. 26, 1–13 (2019).

    Article 

    Google Scholar 

  • Xu, Q., Fattal, D. & Beausoleil, R. G. Silicon microring resonators with 1.5-(upmu )m radius. Decide. Specific 16, 4309–4315 (2008).

    Article 
    ADS 

    Google Scholar 

  • Ansys-Lumerical. (2022) Lumerical. https://www.lumerical.com/ (Accessed: 18 January).

  • Tait, A. N. et al. Microring weight banks. IEEE J. Sel. Prime. Quantum Electron. 22, 312–325 (2016).

    Article 
    ADS 

    Google Scholar 

  • Lindenmann, N. et al. Photonic wire bonding: A novel idea for chip-scale interconnects. Optics Specific 20, 17667–17677 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Lindenmann, N. et al. Connecting silicon photonic circuits to multicore fibers by photonic wire bonding. J. Lightwave Technol. 33, 755–760 (2014).

    Article 
    ADS 

    Google Scholar 

  • Billah, M. R. et al. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding. Optica 5, 876–883 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Xu, Y. et al. InP/silicon hybrid external-cavity lasers (ECL) utilizing photonic wirebonds as coupling components. In Optical Fiber Communication Convention M4H-6 (Optical Society of America, Washington, 2020).

    Google Scholar 

  • Blaicher, M. et al. Hybrid multi-chip meeting of optical communication engines by in situ 3D nano-lithography. Gentle Sci. Appl. 9, 1–11 (2020).

    Article 

    Google Scholar 

  • Chrostowski, L. & Hochberg, M. Silicon photonics design: From gadgets to methods (Cambridge College Press, Cambridge, 2015).

    Guide 

    Google Scholar 

  • Al-Qadasi, M., Chrostowski, L., Shastri, B. & Shekhar, S. Scaling up silicon photonic-based accelerators: Challenges and alternatives. APL Photonics 7, 020902 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Jayatilleka, H., Shoman, H., Chrostowski, L. & Shekhar, S. Photoconductive heaters allow management of large-scale silicon photonic ring resonator circuits. Optica 6, 84–91 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Liu, Z. et al. 56 Gbps high-speed Ge electro-absorption modulator. Photonics Res. 8, 1648–1652 (2020).

    Article 
    CAS 

    Google Scholar 

  • Hui, R. Introduction to Fiber-Optic Communications (Tutorial Press, Cambridge, 2019).

    Google Scholar 

  • Nahmias, M. A. et al. Photonic multiply-accumulate operations for neural networks. IEEE J. Sel. Subjects Quantum Electron. 26, 1–18 (2019).

    Article 

    Google Scholar 

  • Zheng, J. et al. GST-on-silicon hybrid nanophotonic built-in circuits: A non-volatile quasi-continuously reprogrammable platform. Decide. Mater. Specific 8, 1551–1561 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhang, Y. et al. Broadband clear optical section change supplies for high-performance nonvolatile photonics. Nat. Commun. 10, 1–9 (2019).

    ADS 

    Google Scholar 

  • Fang, Z. et al. Non-volatile reconfigurable built-in photonics enabled by broadband low-loss section change materials. Adv. Decide. Mater. 9, 2002049 (2021).

    Article 
    CAS 

    Google Scholar 

  • rewrite this title In direction of a high-density photonic tensor core enabled by intensity-modulated microrings and photonic wire bonding
    Summarize this content material to 100 phrases Tait, A. N. (2021) Quantifying energy use in silicon photonic neural networks. arXiv preprint arXiv:2108.04819Thompson, N. C., Greenewald, Okay., Lee, Okay. & Manso, G. F. (2020) The computational limits of deep studying. arXiv preprint arXiv:2007.05558.Shastri, B. J. et al. Photonics for synthetic intelligence and neuromorphic computing. Nat. Photonics 15, 102–114 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Estakhri, N. M., Edwards, B. & Engheta, N. Inverse-designed metastructures that resolve equations. Science 363, 1333–1338 (2019).Article 
    ADS 
    MATH 

    Google Scholar 
    Xu, X.-Y. et al. A scalable photonic pc fixing the subset sum drawback. Sci. Adv. 6, eaay5853 (2020).Article 
    ADS 

    Google Scholar 
    Zhang, W. & Yao, J. Photonic built-in field-programmable disk array sign processor. Nat. Communi. 11, 1–9 (2020).ADS 

    Google Scholar 
    Salmani, M., Eshaghi, A., Luan, E. & Saha, S. (2021) Photonic computing to speed up knowledge processing in wi-fi communications. arXiv preprint arXiv:2103.07406.Shen, Y. et al. Deep studying with coherent nanophotonic circuits. Nat. Photonics 11, 441–446 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Zhang, H. et al. An optical neural chip for implementing complex-valued neural community. Nat. Commun. 12, 1–11 (2021).ADS 

    Google Scholar 
    Harris, N. C. et al. Quantum transport simulations in a programmable nanophotonic processor. Nat. Photonics 11, 447–452 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Pérez-López, D., Sánchez, E. & Capmany, J. Programmable true time delay traces utilizing built-in waveguide meshes. J. Lightwave Technol. 36, 4591–4601 (2018).Article 
    ADS 

    Google Scholar 
    Shokraneh, F., Nezami, M. S. & Liboiron-Ladouceur, O. Theoretical and experimental evaluation of a 4 (instances ) 4 reconfigurable MZI-based linear optical processor. J. Lightwave Technol. 38, 1258–1267 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Tait, A. N. (2018) Silicon Photonic Neural Networks. Ph.D. thesis, Princeton College, Princeton.Tait, A. N., Nahmias, M. A., Shastri, B. J. & Prucnal, P. R. Broadcast and weight: An built-in community for scalable photonic spike processing. J. Lightwave Technol. 32, 4029–4041 (2014).Article 

    Google Scholar 
    Tait, A. N. et al. Neuromorphic photonic networks utilizing silicon photonic weight banks. Sci. Rep. 7, 1–10 (2017).Article 
    CAS 

    Google Scholar 
    Huang, C. et al. Demonstration of scalable microring weight financial institution management for large-scale photonic built-in circuits. APL Photonics 5, 040803 (2020).Article 
    ADS 

    Google Scholar 
    Blow, E. C. et al. Broadband radio-frequency sign processing with neuromorphic photonics. In AI and Optical Knowledge Sciences III Vol. 12019 157–162 (SPIE, Bellingham, 2022).
    Google Scholar 
    Peng, H.-T. et al. (2021) A photonic-circuits-inspired compact community: Towards real-time wi-fi sign classification on the edge. arXiv preprint arXiv:2106.13865.Huang, C. et al. A silicon photonic-electronic neural community for fibre nonlinearity compensation. Nat. Electron. 4, 837–844 (2021).Article 
    CAS 

    Google Scholar 
    Prucnal, P. R., Shastri, B. J. & Teich, M. C. Neuromorphic photonics (CRC Press, Boca Raton, 2017).Guide 

    Google Scholar 
    Feldmann, J. et al. Parallel convolutional processing utilizing an built-in photonic tensor core. Nature 589, 52–58 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Popović, M. (2008) Concept and design of Excessive-index-contrast Microphotonic Circuits. Ph.D. thesis, Massachusetts Institute of Know-how, Cambridge.Sacher, W. et al. Coupling modulation of microrings at charges past the linewidth restrict. Optics Specific 21, 9722–9733 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Hai, M. S., Fard, M. M. P. & Liboiron-Ladouceur, O. A hoop-based 25 Gb/s DAC-less PAM-4 modulator. IEEE J. Sel. Prime. Quantum Electron. 22, 123–130 (2016).Article 
    ADS 

    Google Scholar 
    Shan, W. et al. Broadband constantly tunable microwave photonic delay line based mostly on cascaded silicon microrings. Decide. Specific 29, 3375–3385 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Preble, S. F. et al. On-chip quantum interference from a single silicon ring-resonator supply. Phys. Rev. Appl. 4, 021001 (2015).Article 
    ADS 

    Google Scholar 
    Shoman, H. et al. Compact wavelength-and bandwidth-tunable microring modulator. Decide. categorical 27, 26661–26675 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Morichetti, F. et al. Polarization-transparent silicon photonic add-drop multiplexer with wideband hitless tuneability. Nat. Commun. 12, 1–7 (2021).Article 
    ADS 

    Google Scholar 
    Jayatilleka, H. et al. Wavelength tuning and stabilization of microring-based filters utilizing silicon in-resonator photoconductive heaters. Decide. Specific 23, 25084–25097 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Poulton, C. V., Dong, P. & Chen, Y.-Okay. (2015) Photoresistive microring heater with resonance management loop. In CLEO: Science and Improvements SM2I–3. Optical Society of America, Washington.Zhang, Y., Li, Y., Feng, S. & Poon, A. W. In direction of adaptively tuned silicon microring resonators for optical networks-on-chip functions. IEEE J. Sel. Subjects Quantum Electron. 20, 136–149 (2014).Article 
    ADS 

    Google Scholar 
    Chrostowski, L. et al. (2021) A silicon photonic evanescent-field sensor structure utilizing a fixed-wavelength laser. In Optical Interconnects XXI, vol 11692. pp. 116920, Worldwide Society for Optics and Photonics, Bellingham.Luan, E., Saha, S., Semnani, B., Salmani, M. & Eshaghi, A. (2021) Interferometric coupling-based modulator for large-scale built-in photonic methods. In 2021 Conf. on Lasers and Electro-Optics Europe & European Quantum Electronics Convention (CLEO/Europe-EQEC), IEEE, NY.Marquez, B. A. et al. Photonic sample reconstruction enabled by on-chip on-line studying and inference. J. Phys. Photonics 3, 024006 (2021).Article 
    ADS 

    Google Scholar 
    Guo, Z. (2021) Photonic Tensor Machine and Multi-level Encoding and Decoding in Wavelength-Multiplexed Photonic Processors. Ph.D. thesis, Queen’s College, Canada.Zhang, W. et al. Microring weight banks management past 8.5-bits accuracy. arXiv preprint arXiv:2104.01164 (2021).Geuzebroek, D. H. & Driessen, A. Ring-resonator-based wavelength filters. In Wavelength filters in fibre optics 341–379 (Springer, Singapore, 2006).Chapter 

    Google Scholar 
    Preston, Okay., Sherwood-Droz, N., Levy, J. S. & Lipson, M. Efficiency tips for WDM interconnects based mostly on silicon microring resonators. In CLEO: 2011-Laser Science to Photonic Functions 1–2 (IEEE, Manhattan, 2011).
    Google Scholar 
    Dong, P. et al. 1×4 reconfigurable demultiplexing filter based mostly on free-standing silicon racetrack resonators. Optics Specific 18, 24504–24509 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Jayatilleka, H. et al. Crosstalk in SOI microring resonator-based filters. J. Lightwave Technol. 34, 2886–2896 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Bangari, V. et al. Digital electronics and analog photonics for convolutional neural networks (DEAP-CNNs). IEEE J. Sel. Prime. Quantum Electron. 26, 1–13 (2019).Article 

    Google Scholar 
    Xu, Q., Fattal, D. & Beausoleil, R. G. Silicon microring resonators with 1.5-(upmu )m radius. Decide. Specific 16, 4309–4315 (2008).Article 
    ADS 

    Google Scholar 
    Ansys-Lumerical. (2022) Lumerical. https://www.lumerical.com/ (Accessed: 18 January).Tait, A. N. et al. Microring weight banks. IEEE J. Sel. Prime. Quantum Electron. 22, 312–325 (2016).Article 
    ADS 

    Google Scholar 
    Lindenmann, N. et al. Photonic wire bonding: A novel idea for chip-scale interconnects. Optics Specific 20, 17667–17677 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Lindenmann, N. et al. Connecting silicon photonic circuits to multicore fibers by photonic wire bonding. J. Lightwave Technol. 33, 755–760 (2014).Article 
    ADS 

    Google Scholar 
    Billah, M. R. et al. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding. Optica 5, 876–883 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Xu, Y. et al. InP/silicon hybrid external-cavity lasers (ECL) utilizing photonic wirebonds as coupling components. In Optical Fiber Communication Convention M4H-6 (Optical Society of America, Washington, 2020).
    Google Scholar 
    Blaicher, M. et al. Hybrid multi-chip meeting of optical communication engines by in situ 3D nano-lithography. Gentle Sci. Appl. 9, 1–11 (2020).Article 

    Google Scholar 
    Chrostowski, L. & Hochberg, M. Silicon photonics design: From gadgets to methods (Cambridge College Press, Cambridge, 2015).Guide 

    Google Scholar 
    Al-Qadasi, M., Chrostowski, L., Shastri, B. & Shekhar, S. Scaling up silicon photonic-based accelerators: Challenges and alternatives. APL Photonics 7, 020902 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Jayatilleka, H., Shoman, H., Chrostowski, L. & Shekhar, S. Photoconductive heaters allow management of large-scale silicon photonic ring resonator circuits. Optica 6, 84–91 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Liu, Z. et al. 56 Gbps high-speed Ge electro-absorption modulator. Photonics Res. 8, 1648–1652 (2020).Article 
    CAS 

    Google Scholar 
    Hui, R. Introduction to Fiber-Optic Communications (Tutorial Press, Cambridge, 2019).
    Google Scholar 
    Nahmias, M. A. et al. Photonic multiply-accumulate operations for neural networks. IEEE J. Sel. Subjects Quantum Electron. 26, 1–18 (2019).Article 

    Google Scholar 
    Zheng, J. et al. GST-on-silicon hybrid nanophotonic built-in circuits: A non-volatile quasi-continuously reprogrammable platform. Decide. Mater. Specific 8, 1551–1561 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Zhang, Y. et al. Broadband clear optical section change supplies for high-performance nonvolatile photonics. Nat. Commun. 10, 1–9 (2019).ADS 

    Google Scholar 
    Fang, Z. et al. Non-volatile reconfigurable built-in photonics enabled by broadband low-loss section change materials. Adv. Decide. Mater. 9, 2002049 (2021).Article 
    CAS 

    Google Scholar